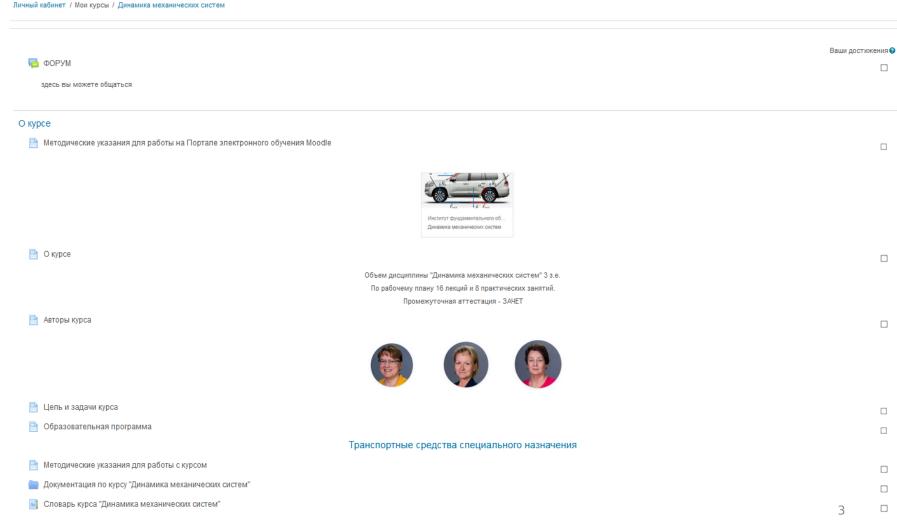
КОНСТРУИРОВАНИЕ КУРСА "ДИНАМИКА МЕХАНИЧЕСКИХ СИСТЕМ" В СРЕДЕ ЭЛЕКТРОННОГО ОБУЧЕНИЯ MOODLE

Докладчик Романовская Елена Мироновна доцент, к.ф.-м.н

направление подготовки 23.05.02 "Транспортные средства специального назначения".


Объем дисциплины 3 з.е.

16 лекций и 8 практических занятий, промежуточная аттестация - зачет

Технологическая карта БРС УрФУ

Гекущая аттестация на лекциях	Сроки – семестр,	Макс. баллы
	учебная неделя	
Гест (аттестация)	2-й сем. 6 нед.	40
Работа с лекциями в электронном курсе	2-й сем. 1-15 нед.	60
	Весовой коэффициент – 0,5	
Промежуточная аттестация по лекциям –ЗАЧЕТ 2. Практические занятия: коэффициент значимо		
Промежуточная аттестация по лекциям –ЗАЧЕТ 2. Практические занятия: коэффициент значимо Гекущая аттестация на практических занятиях		Макс. баллы
2. Практические занятия: коэффициент значимо	сти — 0,6 Сроки — семестр,	Макс. баллы 20
2. Практические занятия: коэффициент значимо Гекущая аттестация на практических занятиях	сти – 0,6 Сроки – семестр, учебная неделя	
2. Практические занятия: коэффициент значимо Гекущая аттестация на практических занятиях Текущий контроль. Этап 1	сти — 0,6 Сроки — семестр, учебная неделя 2-й сем. 1-4 нед.	20

Н1. Введение в динамику механических систем

Определения, понятия и аксиомы. Классификация сил. Меры движения, меры силового воздействия. Исследование устойчивости автомобиля.

- Лекция 1. Введение в динамику механической системы
- Дополнительные материалы. Теория размерности
- 🛅 Пример 1. Устойчивость погрузчика с рукой-манипулятором

Н2.Введение в динамику механических систем. Трение

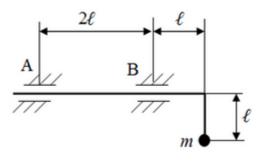
Понятия трения скольжения, трения качения. Тормозная система автомобиля. Колодочный тормоз. Дисковый тормоз

- 🔁 Лекция 2. Трения скольжения. Трения качения
- Дополнительные материалы. Тормозная система автомобиля
- 🛅 Пример 2. Трение скольжения. Колодочный тормоз

Н3-Н7. Динамический расчет при помощи общих теорем динамики

🚹 Лекция 3. Применение теоремы о движении центра масс механической системы

Центр масс механической системы. Определение положения центра масс. Влияние положения центра масс на устойчивость автомобиля. Перемещение незаторможенного автомобиля


Лекция 10. Определение динамических реакций подшипниково

Просмотр

Редактировать

Отчеты

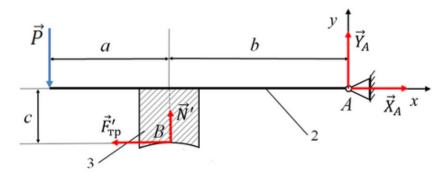
Оценить эссе

Материальная точка массой $m = 0.5 \, \kappa z$ вращается с постоянной угловой скоростью $\omega = 2 \, pad/c$, расстояние $\ell = 0.2 \, m$. Модуль динамической реакции подшипника А равен...Н

Ваш ответ

ОТПРАВИТЬ

Личный кабинет / Мои курсы / Динамика механических систем / Н2.Введение в динамику механических систем. Трение / Пример 2. Трение скольжения. Колодочный тормоз


Пример 2. Трение скольжения. Колодочный тормоз⊛

Просмотр

Редактировать

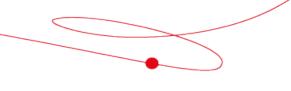
Отчеты

Оценить эссе

Установите соответствие между силой и плечом относительно точки А

P

Выберите... 💠

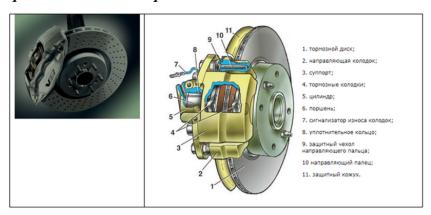

F'_{TP}

Выберите... 🕏

N'

Выберите... Ф

Личный кабинет / Мои курсы / Динамика механических систем / Н2.Введение в динамику механических систем. Трение / Дополнительные материалы. Тормозная система автомобиля


Дополнительные материалы. Тормозная система автомобиля

- 4. Устройство тормозного механизма.
- 4.2. Устройство дискового тормозного механизма.

Тормозная система автомобиля.

Устройство дискового тормозного механизма.

Традиционный дисковый тормозной механизм состоит из одного диска, который вращается, и двух колодок, которые неподвижны и размещены внутри суппорта с обеих сторон. Сам суппорт при этом надежно зафиксирован на кронштейне. В основании суппорта имеются рабочие цилиндры, которые в момент торможения прижимают колодки к диску.

1. Тормозная система ... 🕹 2. Виды тормозных .. 3. Схема

Оглавление

4. Устройство торм... •

 4.1. Барабанные и... 4.2. Устройство ... ↑ ↓ 5. Тормозной привод 🛧

 5.1. Механически... • • 5.2. Гидравлическ... 🛧 🕹

5.3. Пневматичес... • 5.4. Комбинирова... •

6. Тормозная систе... • 6.1. Принцип работы

фундаментального образования

Видео: ШЭ переходит трассу

эходящая машины

зый в мире шагающий механизм

Тема «Шагающие механизмы». Стопоходящая машина.

Стопоходящая машина П.Л.Чебышева.

На основании описанного механизма Чебышёв изготовил первый в мире шагающий механизм, который пользовался большим успехом на Всемирной выставке в Париже

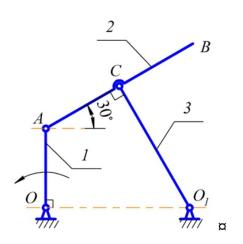
Чебышева **1**бда-механизм используется в механизмах нспортных средств, шагающих роботах и колесных механизмах маг

a https://tcheb.ru

Оглавление

- 1.1. Применение
- 2. Шагающие механизмы от Рожде
- Христова до наших дней 2.1. Лошадь с повозкой (230 год до
- Рождества Христова)
- 2.2. Патент 1877-78 года
- П.Л.Чебышева
- 2.4. Механические споны (1965 г.)
- 3. Современные разработки ц
- 3.1. США
- 3.2. Англия 3.3. Япония
- 3.5. Финляндия
- 4. Разработки шагающих мац
- 4.1. Машина "Восьминог
- 4.2. Робот с ортогонально
- 5. Первый этал в проектировани
- шагающего робота
- 5.2. Четыре ноги 5.3. Две ноги
- 5.4. Биологические прототипы
- 5.5. Нога с пятью степенями свободь
- 6. Второй этап в проектировани 7. Третий этап

- 8.2. Кинематическая схе
- шагающего механизма
- 8.3. Первый в мире шагающий
- 9. Шагающие экскаваторы 9.1. Схема шагающего экскаватор
- 9.2. Основные характеристики 10. Как шагает экскаватор
- 10.1. Последовательность 10.2. Скорость шагающего


- 12. Отечественные производител шагажих экскаваторов 12.1. Уральский завод тяжелого
- машиностроения (Уралмаш) 12.2. Урадмаш Поставка крупної партии драглайнов

Личный кабинет / Мои курсы / Динамика механических систем / Моделирование ДОМАШНЕЕ ЗАДАНИЕ / ЗАДАНИЕ 1: Моделирование механизма

ЗАДАНИЕ 1: Моделирование механизма

В одной из программ моделирования создать 3d модель и "оживить" механизм. (Blender)
Представить 3-d модель и видео-ролик.

Динамика механических систем

Личный кабинет / Мои курсы / Динамика механических систем / Н9-Н10 Динамический расчет при помощи принципа Даламбера / Задание 10

Задание 10

- 1. Подобрать численные данные для случая 1 (разобранном на практическом занятии автомобиль с ведущими задними колесами)
- 2. Решить задачу для случая 2 когда ведущие колеса -передние. Провести расчет по заданным значениям:

Пример. Рассмотрим движение автомобиля «Тойота-Камри 2011 моалфикация 2.5» при следующих двичениях исходных далинах: $M_m = 224 \, \text{H·m}$; $M_m = 51 \, \text{M·m}$, $R = 100 \, \text{H}$, ведущик колоса передине, $M = 1985 \, \text{kr}$ ($P = 19453 \, \text{H}$); $M_m = 1965 \, \text{kr}$ ($P = 19457 \, \text{H}$); $M_m = 1965 \, \text{kr}$ ($P = 19457 \, \text{H}$); $M_m = 1965 \, \text{kr}$ ($P = 19457 \, \text{H}$); $M_m = 1965 \, \text{kr}$ ($M_m = 1965 \, \text{kr}$); M

Романовская Елена Мироновна E.M.Romanovskaia@urfu.ru